Showing posts with label fractals. Show all posts
Showing posts with label fractals. Show all posts

Wednesday, August 27, 2025

Is the universe a fractal? ~ by Amanda Gefter (reprise)


WRITTEN ACROSS THE SKY is a secret, a hidden blueprint detailing the original design of the universe itself. The spread of matter throughout space follows a pattern laid out at the beginning of time and scaled up to incredible proportions by nearly 14 billion years of cosmic expansion. Today that pattern is gradually being decoded by analysing maps of the distribution of the stars, and what has been uncovered could shake modern cosmology to its foundations.

Luciano Pietronero: "It's fractals, fractals all the way!"
Cosmology is founded on the assumption that when you look at the universe at the vastest scales, matter is spread more or less evenly throughout space. Cosmologists call this a "smooth" structure. But a small band of researchers, led by statistical physicist Luciano Pietronero (pictured right) of the University of Rome and the Institute of Complex Systems, Italy, argues that this assumption is at odds with what we can see. Instead they claim that the galaxies form a structure that isn't smooth at all: some parts of it have lots of matter, others don't, but the matter always falls into the same patterns, in large and small versions, at whatever scale you look. In other words, the universe is fractal.

It is a controversial view, and one that sparked an intense debate over a decade ago. Since then, astronomers have surveyed ever-greater numbers of galaxies, taking larger and larger samples of the universe. Now the biggest galaxy survey ever and a brand new map of the universe's dark matter are adding fuel to the fire. At stake is far more than the way galaxies cluster. A fractal universe could undermine cosmology's most basic assumptions. "All of the observations we make depend to a greater or lesser extent on the idea that the universe is homogeneous," says David Hogg of New York University, who leads a team of physicists that disputes Pietronero's view.

This idea that matter is spread more or less evenly throughout the universe is embodied in Einstein's cosmological principle. Einstein formulated it after publishing his general theory of relativity, which describes how the distribution of mass bends space-time and creates gravity. It allows cosmologists to use the equations of general relativity to describe the geometry of the whole universe. As a result it has led to a picture of a universe expanding uniformly from the big bang and in which cosmological measurements have defined meanings.


Fractals allow Pietronero to paint a very different sort of picture - one in which the irregular distribution of matter that we see around us never evens out into a smooth structure, but repeats itself at ever grander scales. Fractals are familiar enough: we see them in the branching of trees, the curves of coastlines, lungs, turbulence and clouds.

No matter what scale you look at them, fractal patterns look the same. Think of broccoli: a tiny branch looks much the same as the whole vegetable. Zoom in or zoom out, the structure looks the same - exquisitely detailed, never smooth. Fractals can be beautiful to look at, but when it comes to galaxies it may be a subversive kind of beauty.

Certainly the universe does not look smooth. Some regions contain clusters of matter; others are virtually empty. Hundreds of billions of stars group together to form galaxies, and galaxies congregate in clusters. Clusters assemble into colossal structures called superclusters that can stretch out for 100 million light years and look uncannily like fractal patterns.

Even superclusters string together in long filaments and sheets that stretch like ghostly cobwebs across an otherwise empty sky. The Sloan Great Wall, for example, which was discovered in 2003, spans more than a billion light years. These filaments and sheets seem to encircle huge voids of empty space. The voids range from 100 to 400 million light years in diameter, making the whole assemblage appear as an immense, glowing lattice punctuated by wells of darkness.


No one disputes that the universe is far from smooth on relatively small scales - by which cosmologists mean thousands of light years. But Hogg's team is convinced that if you zoom further out, smoothness reigns.

"When you're looking at the size scales of galaxies, groups of galaxies, clusters, superclusters and filaments, it looks like a fractal," says Hogg (pictured right). "But once you get larger than all of that, then it starts to look homogeneous." What has convinced him is his team's analysis of the latest data from the Sloan Digital Sky Survey, the largest 3D map of the galactic universe so far. His team insists that the map is proof of smoothness. The fractal camp, however, are sceptical. In fact, they say the Sloan observations confirm what they've been claiming all along.

It might appear to be deadlock, but at least with the Sloan survey the two sides can agree what they're disagreeing about. For years Pietronero and his team argued that the statistical methods mainstream cosmologists were using to establish homogeneity were flawed because they start off by assuming that matter is evenly spread. The team was mostly ignored until 2004, when Hogg and astrophysicist Daniel Eisenstein of the University of Arizona in Tucson spent a summer in Paris with Pietronero's colleagues, cosmologists Francesco Sylos Labini of the Enrico Fermi Centre and the Institute for Complex Systems, Rome, and Michael Joyce of the Pierre and Marie Curie University, Paris.



"We argued every day about fractals," Hogg says. "Those battles raged over lunch and coffee and finally convinced us by the end of our visit that we should be doing the analysis as they say." When they returned to the US, Hogg and Eisenstein applied the fractal team's methods to a sample of 55,000 luminous red galaxies mapped by Sloan. They found that the galaxies do form a fractal pattern, but as they looked at bigger and bigger scales, the pattern appeared to disintegrate and smooth out at just over 200 million light years - a scale far larger than most cosmologists had expected.


But Pietronero and Sylos Labini are not convinced. Instead, they believe that if astronomers could continue to zoom out and look at even larger scales, they would find more clustering. They suspect that the apparent smoothness at 200 million light years is not real, but rather an illusion created by statistical effects due to the limited range of the Sloan survey. Hogg's team, though, insist that their evidence of homogeneity is statistically significant. "I think the result really is secure," says Hogg. "I would stake my scientific reputation on that."


Even if the result is real, mainstream cosmologists still have a huge problem on their hands. The fact that the fractal patterning extends to far bigger scales than anyone had expected means that there must be far bigger structures than anyone expected - structures that are even bigger than superclusters. The fractal team argues that the standard model cannot explain the existence of these galactic giants. "If you look at the galaxy data, you can see enormous objects hundreds of millions of light years across, stuff that's really huge," says Pietronero. "This is a huge problem. You're going to have to change the story very radically."

The usual story runs something like this. In the tiny fluctuations of the nascent universe, matter began to collect in denser regions, setting off a chain reaction of gravitational collapse that has given us the large-scale structure we see today. Gravity has worked from the bottom up, building galaxies first, then collecting galaxies into clusters, then clusters into superclusters and so forth. But while the matter has been clumping together, the universe has been expanding, and thus a battle has ensued: gravity versus expansion.


According to Pietronero, there simply hasn't been enough time since the universe came into being 14 billion years ago for gravity to sculpt structures larger than about 30 million light years across: expansion would have prevented anything larger from forming. "The existence of structures much larger than this implies a crisis of the present view of structure formation," he says. This present view is the "cold dark matter model", in which the glowing masses of stars and galaxies are only the tip of the cosmic iceberg. Luminous matter makes up roughly 15 per cent of all the matter in the universe - the other 85 per cent is mysterious dark matter.

Hogg's team says that the new observations do not undermine the standard view as Pietronero claims. Instead, they maintain that the cold dark matter model explains the Sloan data quite accurately. For that to be true, however, Hogg's team have to put a number called a bias parameter into their equations. It reflects the difference between the distribution of matter in computer simulations of the cold dark matter model and the observed distribution of luminous matter.


Collisions between particles of ordinary matter help it clump together, but dark matter is thought not to behave in the same way. That suggests it could be spread out in space more evenly than ordinary matter, so cosmologists assume that the distribution of the matter we can see - galaxies, say - is not a true reflection of the distribution of all the matter that is out there. They believe the structure of the universe is really much "smoother" than it appears to be, because dark matter dominates. In the case of the Sloan survey, the bias is 2: the visible galaxies are clumped twice as densely as the predicted total distribution of matter in the universe.


Sylos Labini, however, sees the bias as a fudge that allows cosmologists to discount the observed clustering of galaxies and to assume that the gigantic clusters of superclusters are only half the problem they appear to be. "The bias is a way to hide the size of structures behind some ad hoc parameter," he says. Mainstream cosmologists, however, feel the bias is justified, assuming that galaxies cluster in regions of space that are replete with excess dark matter. According to the standard model, dark matter is everywhere, but galaxies only shine in the rare regions where dark matter is densest. Dark matter also lingers in the voids where no light shines but here it is thinly spread out. In other words, while the luminous galaxies look very clustered, the underlying blanket of dark matter is far smoother, supporting the claim of homogeneity.



"If the cold dark matter model is correct, then there should be dark matter in the voids," Hogg says. The million-dollar question is: what is the real distribution of dark matter? Is dark matter smooth or fractal? Is it clustered like the galaxies, or does it spread out, unseen, into the great voids? If the voids are full of dark matter, then the apparent fractal distribution of luminous matter becomes rather insignificant. But if the voids are truly empty, the fractal claim requires a closer look.

Astronomers are now providing our first glimpse into the voids and our first look at the pattern of invisible matter. Richard Massey of the California Institute of Technology in Pasadena and others in the Cosmic Evolution Survey project have just created the first 3D map of dark matter in the universe (New Scientist, 13 January, p 5). They were able to find the dark matter by observing its gravitational effect on any light streaming past it. Combining data from the Hubble Space Telescope, the Subaru telescope in Hawaii and the Very Large Telescope in Chile, they mapped the distribution of dark matter at scales ranging from 23 million to 200 million light years across.


Massey's team found that the dark matter distribution is nearly identical to the luminous matter distribution. "The first thing that strikes me is the voids," Massey says. "Vast expanses of space are completely empty. The dark matter makes up a criss-crossing network of strings and sheets around these voids. And all the luminous matter lies within the densest regions of dark matter." Although this distribution of dark matter seems to favour the idea that the universe is fractal, Hogg isn't convinced. "It is interesting," he says, "but measurements of dark matter are much less precise than measurements of galaxy distributions."


"The result is very new," Massey agrees. "It demonstrates a very exciting new way of looking directly at dark matter and will be vital in future work, but hasn't yet been subject to all the analysis that has been applied to galaxy surveys." When asked if the dark matter exhibits an explicitly fractal structure, Massey replies, "We don't know yet."

"The universe is not a fractal," Hogg insists, "and if it were a fractal it would create many more problems that we currently have." A universe patterned by fractals would throw all of cosmology out the window. Einstein's cosmic equations would be tossed first, with the big bang and the expansion of the universe following closely behind. Hogg's team feel that until there's a theory to explain why the galaxy clustering is fractal, there's no point in taking it seriously.


"My view is that there's no reason to even contemplate a fractal structure for the universe until there is a physical fractal model," says Hogg. "Until there's an inhomogeneous fractal model to test, it's like tilting at windmills."

Pietronero is equally insistent. "This is fact," he says. "It's not a theory." He says he is interested only in what he sees in the data and argues that the galaxies are fractal regardless of whether someone can explain why. As it turns out, there is one model that may be able to explain a fractal universe. The work of a little-known French astrophysicist named Laurent Nottale, the theory is called "scale relativity" (see "Fractured space-time" below).


According to Nottale, the distribution of matter in the universe is fractal because space-time itself is fractal. It is a theory on the fringe, but if the universe does turn out to be fractal, more people might sit up and take notice. A resolution to the fractal debate will only come with more data. Sloan is currently charting more galaxies and will release a new map in the middle of 2008. According to Sylos Labini, this will cover over 650 million light years and should tell us if the apparent transition to homogeneity extends beyond 200 million light years. For now, the pattern of the world, imprinted at the origin of the universe, remains a secret glimpsed only in the knowing shimmer of the stars.


FRACTURED SPACE-TIME
French astrophysicist Laurent Nottale has developed a theory that takes fractals to a whole new level. A researcher at the Meudon Observatory in Paris, Nottale set out to extend Einstein's principle of relativity - in which the laws of physics remain the same regardless of the motion of an observer - to a theory in which the laws of physics would remain the same regardless of the scale at which the universe is being observed. He found that the underlying space-time of such a theory would have to be fractal.

In Nottale's theory, called scale relativity, the underlying fractality of space-time is most noticeable in the quantum world. Quantum behaviour, he claims, can be understood geometrically - particles move along fractal trajectories. On large scales, his model could explain a fractal pattern of the galaxies. The most profound question in physics today is how to unify the really small with the really big - and when it comes to matters of scale, fractals may turn out to be a key ingredient.
Amanda Gefter
© New Scientist
09 March 2007

[First posted 1 October 2007, reposted 17 November 2013 & 21 September 2016]

Friday, August 16, 2024

Is the universe a fractal? ~ by Amanda Gefter (repost)


WRITTEN ACROSS THE SKY is a secret, a hidden blueprint detailing the original design of the universe itself. The spread of matter throughout space follows a pattern laid out at the beginning of time and scaled up to incredible proportions by nearly 14 billion years of cosmic expansion. Today that pattern is gradually being decoded by analysing maps of the distribution of the stars, and what has been uncovered could shake modern cosmology to its foundations.

Luciano Pietronero: "It's fractals, fractals all the way!"


Cosmology is founded on the assumption that when you look at the universe at the vastest scales, matter is spread more or less evenly throughout space. Cosmologists call this a "smooth" structure. But a small band of researchers, led by statistical physicist Luciano Pietronero (pictured right) of the University of Rome and the Institute of Complex Systems, Italy, argues that this assumption is at odds with what we can see. Instead they claim that the galaxies form a structure that isn't smooth at all: some parts of it have lots of matter, others don't, but the matter always falls into the same patterns, in large and small versions, at whatever scale you look. In other words, the universe is fractal.

It is a controversial view, and one that sparked an intense debate over a decade ago. Since then, astronomers have surveyed ever-greater numbers of galaxies, taking larger and larger samples of the universe. Now the biggest galaxy survey ever and a brand new map of the universe's dark matter are adding fuel to the fire. At stake is far more than the way galaxies cluster. A fractal universe could undermine cosmology's most basic assumptions. "All of the observations we make depend to a greater or lesser extent on the idea that the universe is homogeneous," says David Hogg of New York University, who leads a team of physicists that disputes Pietronero's view.

This idea that matter is spread more or less evenly throughout the universe is embodied in Einstein's cosmological principle. Einstein formulated it after publishing his general theory of relativity, which describes how the distribution of mass bends space-time and creates gravity. It allows cosmologists to use the equations of general relativity to describe the geometry of the whole universe. As a result it has led to a picture of a universe expanding uniformly from the big bang and in which cosmological measurements have defined meanings.


Fractals allow Pietronero to paint a very different sort of picture - one in which the irregular distribution of matter that we see around us never evens out into a smooth structure, but repeats itself at ever grander scales. Fractals are familiar enough: we see them in the branching of trees, the curves of coastlines, lungs, turbulence and clouds.

No matter what scale you look at them, fractal patterns look the same. Think of broccoli: a tiny branch looks much the same as the whole vegetable. Zoom in or zoom out, the structure looks the same - exquisitely detailed, never smooth. Fractals can be beautiful to look at, but when it comes to galaxies it may be a subversive kind of beauty.


Certainly the universe does not look smooth. Some regions contain clusters of matter; others are virtually empty. Hundreds of billions of stars group together to form galaxies, and galaxies congregate in clusters. Clusters assemble into colossal structures called superclusters that can stretch out for 100 million light years and look uncannily like fractal patterns.

Even superclusters string together in long filaments and sheets that stretch like ghostly cobwebs across an otherwise empty sky. The Sloan Great Wall, for example, which was discovered in 2003, spans more than a billion light years. These filaments and sheets seem to encircle huge voids of empty space. The voids range from 100 to 400 million light years in diameter, making the whole assemblage appear as an immense, glowing lattice punctuated by wells of darkness.


No one disputes that the universe is far from smooth on relatively small scales - by which cosmologists mean thousands of light years. But Hogg's team is convinced that if you zoom further out, smoothness reigns.

"When you're looking at the size scales of galaxies, groups of galaxies, clusters, superclusters and filaments, it looks like a fractal," says Hogg (pictured right). "But once you get larger than all of that, then it starts to look homogeneous." What has convinced him is his team's analysis of the latest data from the Sloan Digital Sky Survey, the largest 3D map of the galactic universe so far. His team insists that the map is proof of smoothness. The fractal camp, however, are sceptical. In fact, they say the Sloan observations confirm what they've been claiming all along.

It might appear to be deadlock, but at least with the Sloan survey the two sides can agree what they're disagreeing about. For years Pietronero and his team argued that the statistical methods mainstream cosmologists were using to establish homogeneity were flawed because they start off by assuming that matter is evenly spread. The team was mostly ignored until 2004, when Hogg and astrophysicist Daniel Eisenstein of the University of Arizona in Tucson spent a summer in Paris with Pietronero's colleagues, cosmologists Francesco Sylos Labini of the Enrico Fermi Centre and the Institute for Complex Systems, Rome, and Michael Joyce of the Pierre and Marie Curie University, Paris.


"We argued every day about fractals," Hogg says. "Those battles raged over lunch and coffee and finally convinced us by the end of our visit that we should be doing the analysis as they say." When they returned to the US, Hogg and Eisenstein applied the fractal team's methods to a sample of 55,000 luminous red galaxies mapped by Sloan. They found that the galaxies do form a fractal pattern, but as they looked at bigger and bigger scales, the pattern appeared to disintegrate and smooth out at just over 200 million light years - a scale far larger than most cosmologists had expected.


But Pietronero and Sylos Labini are not convinced. Instead, they believe that if astronomers could continue to zoom out and look at even larger scales, they would find more clustering. They suspect that the apparent smoothness at 200 million light years is not real, but rather an illusion created by statistical effects due to the limited range of the Sloan survey. Hogg's team, though, insist that their evidence of homogeneity is statistically significant. "I think the result really is secure," says Hogg. "I would stake my scientific reputation on that."


Even if the result is real, mainstream cosmologists still have a huge problem on their hands. The fact that the fractal patterning extends to far bigger scales than anyone had expected means that there must be far bigger structures than anyone expected - structures that are even bigger than superclusters. The fractal team argues that the standard model cannot explain the existence of these galactic giants. "If you look at the galaxy data, you can see enormous objects hundreds of millions of light years across, stuff that's really huge," says Pietronero. "This is a huge problem. You're going to have to change the story very radically."

The usual story runs something like this. In the tiny fluctuations of the nascent universe, matter began to collect in denser regions, setting off a chain reaction of gravitational collapse that has given us the large-scale structure we see today. Gravity has worked from the bottom up, building galaxies first, then collecting galaxies into clusters, then clusters into superclusters and so forth. But while the matter has been clumping together, the universe has been expanding, and thus a battle has ensued: gravity versus expansion.


According to Pietronero, there simply hasn't been enough time since the universe came into being 14 billion years ago for gravity to sculpt structures larger than about 30 million light years across: expansion would have prevented anything larger from forming. "The existence of structures much larger than this implies a crisis of the present view of structure formation," he says. This present view is the "cold dark matter model", in which the glowing masses of stars and galaxies are only the tip of the cosmic iceberg. Luminous matter makes up roughly 15 per cent of all the matter in the universe - the other 85 per cent is mysterious dark matter.

Hogg's team says that the new observations do not undermine the standard view as Pietronero claims. Instead, they maintain that the cold dark matter model explains the Sloan data quite accurately. For that to be true, however, Hogg's team have to put a number called a bias parameter into their equations. It reflects the difference between the distribution of matter in computer simulations of the cold dark matter model and the observed distribution of luminous matter.


Collisions between particles of ordinary matter help it clump together, but dark matter is thought not to behave in the same way. That suggests it could be spread out in space more evenly than ordinary matter, so cosmologists assume that the distribution of the matter we can see - galaxies, say - is not a true reflection of the distribution of all the matter that is out there. They believe the structure of the universe is really much "smoother" than it appears to be, because dark matter dominates. In the case of the Sloan survey, the bias is 2: the visible galaxies are clumped twice as densely as the predicted total distribution of matter in the universe.


Sylos Labini, however, sees the bias as a fudge that allows cosmologists to discount the observed clustering of galaxies and to assume that the gigantic clusters of superclusters are only half the problem they appear to be. "The bias is a way to hide the size of structures behind some ad hoc parameter," he says. Mainstream cosmologists, however, feel the bias is justified, assuming that galaxies cluster in regions of space that are replete with excess dark matter. According to the standard model, dark matter is everywhere, but galaxies only shine in the rare regions where dark matter is densest. Dark matter also lingers in the voids where no light shines but here it is thinly spread out. In other words, while the luminous galaxies look very clustered, the underlying blanket of dark matter is far smoother, supporting the claim of homogeneity.


"If the cold dark matter model is correct, then there should be dark matter in the voids," Hogg says. The million-dollar question is: what is the real distribution of dark matter? Is dark matter smooth or fractal? Is it clustered like the galaxies, or does it spread out, unseen, into the great voids? If the voids are full of dark matter, then the apparent fractal distribution of luminous matter becomes rather insignificant. But if the voids are truly empty, the fractal claim requires a closer look.

Astronomers are now providing our first glimpse into the voids and our first look at the pattern of invisible matter. Richard Massey of the California Institute of Technology in Pasadena and others in the Cosmic Evolution Survey project have just created the first 3D map of dark matter in the universe (New Scientist, 13 January, p 5). They were able to find the dark matter by observing its gravitational effect on any light streaming past it. Combining data from the Hubble Space Telescope, the Subaru telescope in Hawaii and the Very Large Telescope in Chile, they mapped the distribution of dark matter at scales ranging from 23 million to 200 million light years across.


Massey's team found that the dark matter distribution is nearly identical to the luminous matter distribution. "The first thing that strikes me is the voids," Massey says. "Vast expanses of space are completely empty. The dark matter makes up a criss-crossing network of strings and sheets around these voids. And all the luminous matter lies within the densest regions of dark matter." Although this distribution of dark matter seems to favour the idea that the universe is fractal, Hogg isn't convinced. "It is interesting," he says, "but measurements of dark matter are much less precise than measurements of galaxy distributions."


"The result is very new," Massey agrees. "It demonstrates a very exciting new way of looking directly at dark matter and will be vital in future work, but hasn't yet been subject to all the analysis that has been applied to galaxy surveys." When asked if the dark matter exhibits an explicitly fractal structure, Massey replies, "We don't know yet."

"The universe is not a fractal," Hogg insists, "and if it were a fractal it would create many more problems that we currently have." A universe patterned by fractals would throw all of cosmology out the window. Einstein's cosmic equations would be tossed first, with the big bang and the expansion of the universe following closely behind. Hogg's team feel that until there's a theory to explain why the galaxy clustering is fractal, there's no point in taking it seriously.


"My view is that there's no reason to even contemplate a fractal structure for the universe until there is a physical fractal model," says Hogg. "Until there's an inhomogeneous fractal model to test, it's like tilting at windmills."

Pietronero is equally insistent. "This is fact," he says. "It's not a theory." He says he is interested only in what he sees in the data and argues that the galaxies are fractal regardless of whether someone can explain why. As it turns out, there is one model that may be able to explain a fractal universe. The work of a little-known French astrophysicist named Laurent Nottale, the theory is called "scale relativity" (see "Fractured space-time" below).


According to Nottale, the distribution of matter in the universe is fractal because space-time itself is fractal. It is a theory on the fringe, but if the universe does turn out to be fractal, more people might sit up and take notice. A resolution to the fractal debate will only come with more data. Sloan is currently charting more galaxies and will release a new map in the middle of 2008. According to Sylos Labini, this will cover over 650 million light years and should tell us if the apparent transition to homogeneity extends beyond 200 million light years. For now, the pattern of the world, imprinted at the origin of the universe, remains a secret glimpsed only in the knowing shimmer of the stars.


FRACTURED SPACE-TIME

French astrophysicist Laurent Nottale has developed a theory that takes fractals to a whole new level. A researcher at the Meudon Observatory in Paris, Nottale set out to extend Einstein's principle of relativity - in which the laws of physics remain the same regardless of the motion of an observer - to a theory in which the laws of physics would remain the same regardless of the scale at which the universe is being observed. He found that the underlying space-time of such a theory would have to be fractal.

In Nottale's theory, called scale relativity, the underlying fractality of space-time is most noticeable in the quantum world. Quantum behaviour, he claims, can be understood geometrically - particles move along fractal trajectories. On large scales, his model could explain a fractal pattern of the galaxies. The most profound question in physics today is how to unify the really small with the really big - and when it comes to matters of scale, fractals may turn out to be a key ingredient.

Amanda Gefter
© New Scientist
9 March 2007

[First published on this blog 1 October 2007, Reposted 20 August 2011]


Thursday, May 16, 2019

Introduction to the Mandelbrot set ~ key to infinity! (repost)





Benoît B. Mandelbrot (20 November 1924 – 14 October 2010) was a Polish-born, French and American mathematician, noted for developing a "theory of roughness" and "self-similarity" in nature and the field of fractal geometry to help prove it, which included coining the word "fractal." He later discovered the Mandelbrot set of intricate, never-ending fractal shapes, named in his honor.

When he was a child, his family immigrated to France in 1936. After World War II ended in 1945, Mandelbrot studied mathematics, graduating from universities in Paris and the U.S., receiving a masters degree in aeronautics from Caltech. He spent most of his career in both the U.S. and France, having dual French and American citizenship. In 1958 he began working for IBM, where he stayed for 35 years and was an IBM Fellow.

Because of his access to IBM's computers, Mandelbrot was one of the first to use computer graphics to create and display fractal geometric images, leading to his discovering the Mandelbrot set in 1979. By doing so, he was able to show how visual complexity can be created from simple rules. He said that things typically considered to be "rough," a "mess" or "chaotic," like clouds or shorelines, actually had a "degree of order." His research career included contributions to such fields as geology, medicine, cosmology, engineering and the social sciences. Science writer Arthur C. Clarke credits the Mandelbrot set as being "one of the most astonishing discoveries in the entire history of mathematics."

[Source: Wikipedia. First posted 13 July 2014]




Sunday, April 26, 2009

Where Malaysia is headed (Part 7)



Most people I know blame "most people" for being recalcitrant sticks in the mud.

For example, if I suggest we test out the honor system by leaving a crate of bottled water unattended with a sign that says "Just drop one ringgit in the box, thanks!"... most people will immediately argue that the idea won't work - because "most people" will simply help themselves to a bottle and walk off without paying. Indeed, some people may even decide to cart away the entire crate!

This is why I consciously avoid using the phrase "most people." When you begin to think in terms of "most people" it indicates you're caught up in statistical pseudo-reality; you're approaching life quantitatively rather than qualitatively.

Most people... oops... many of us have heard Benjamin Disraeli's famous quote: "There are essentially three types of lies. Lies, damned lies, and statistics." Statistical thinking implies that the more people believe in something, the more likely it is to come true.

To a certain extent this is demonstrably so. If a vast majority of humans believe the death penalty effectively deters serious crimes, the few voices in the wilderness calling for the abolition of capital punishment will be ignored. Same goes for ridiculously repressive laws like the ISA and archaic statutes outlawing fornication and "sexual acts against the order of nature."

Similarly, when enough of us decide that institutions such as monarchies or secret police agencies have done more harm than good, it's almost certain these institutions will soon be dismantled and relegated to a niche in some museum.

The sultans can make any number of speeches defending their own exalted status. But in a rapidly changing social, cultural and political climate where enough of us have begun to probe beyond the surface of events, what these grand panjandrums say will be subject to intense scrutiny. If their speeches come across as self-serving, insincere or hollow-sounding rhetoric, people will neither be impressed nor swayed - no matter how posh the accent or how expensive the costume. Respect must be earned. It cannot be gained at gunpoint.

The concept of royalty is a carryover from a colonialistic age fast fading. An age when rigid social hierarchies and caste stratifications governed human affairs. 19th-century British colonizers gained a foothold in the Malay states by installing themselves as official advisors (Residents, they were called) to local warlords and thugs they then enthroned as Sultans (an honorific borrowed from the Turks), with whom they had signed mutually beneficial contracts. Thereafter the natives were encouraged to address the White Man as Tuan, thereby according him the same status as their own fake monarchs.

What does "tuan" mean? Is it not a contraction of "Tuhan" - meaning "Lord"? And is it by sheer coincidence that no distinction is made between a celestial and terrestrial lord?

My friend Joe Kidd is a study unto himself. I first encountered him as the lead singer of a popular thrash metal band called Carburetor Dung. Later I discovered Joe Kidd had acquired the stature of a cult leader amongst the hippest segment of disaffected urban youth who had formed themselves into a commune called the Republic of Brickfields. Joe was a pioneer in the Malaysian anarcho-punk underground. He edited and published the first indie zines in circulation, produced an impressive catalog of indie albums, and linked up with a worldwide network of like-minded young people. He approached everything with a refreshing irreverence and began calling everybody "Boss" - whether they were jaga kereta  (car park attendants) or corporate moguls. I was much taken with Joe's egalitarian approach. By tagging everybody "boss" Joe was making a significant statement. Each of us is ultimately his or her own boss.


This is soundly supported by cutting-edge quantum physics which has finally discovered the fractal nature of existence. The center is simultaneously everywhere and nowhere - which means reality is never static. So much for the status quo.

Tuhan - the concept of sovereignty, of lord or ladyship - resides within each of us (at least as an inherent potentiality) - just as the Orang Asli say Tuhan can be found in all lifeforms, animal or vegetable, mineral or devic, human or divine. For anyone to claim a monopoly of exaltedness or divinity is a travesty of natural justice, if not an outright scam.

Thus you will find in Orang Asli communities an unwritten egalitarianism - the basis of democratic governance - wherein even a child is recognized as a future adult and therefore entitled to exercise a certain degree of free will (provided his actions do not seriously endanger himself or others).

Village council in Samoa

The batin  or headman of any village is regarded as a "first among equals" - someone who has accepted responsibility for the overall well-being of his anak buah  or extended family. As such, the batin's residence is often slightly larger than the others, since he may have to convene an occasional assembly of the village elders or entertain visitors from the outside world. But not considerably larger, and rarely so ostentatious as to cause ripples of envy amongst his anak buah  and make them feel inferior.

Village council in Tanzania

In ancient Athens where the notion of democracy is supposed to have first appeared, a deme  constituted the smallest administrative unit. The word deme  or demos  essentially meant a village, and was synonymous with "the people" as in rakyat. Fifty representatives from each of ten tribes were elected to serve for one year as the Council, whose main function was to prepare the agenda for meetings of the Assembly comprising all male Athenian citizens 18 years of age and above (Athenian women enjoyed special status as citizens but were denied political rights).

Despite the gender discrimination and inherent flaws in the system, Athenian democracy flourished for around 200 years - until the rise of Macedonia as a military power - first under Philip and then his famous son, Alexander, from whom our Malay rulers claim descent. Isn't it rather amusing - and also pungently ironic - that the aggressively imperialistic bloodline that destroyed Athenian democracy continues its undemocratic rule via its unlikely descendants in the far-flung Orient?

Meeting of the Perak State Assembly under the Democracy Tree, 3 March 2009
You have a problem with fat cats or what?

"most people
fear most

a mystery
for which
i've
no word
except
alive"
- e.e. cummings


Where Malaysia is headed (Part 8)